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Learning Sto
hasti
 Logi
 ProgramsStephen MuggletonDepartment of Computer S
ien
e,University of York,York, YO1 5DD,United Kingdom.Abstra
tSto
hasti
 Logi
 Programs (SLPs) have been shown tobe a generalisation of Hidden Markov Models (HMMs),sto
hasti
 
ontext-free grammars, and dire
ted Bayes'nets. A sto
hasti
 logi
 program 
onsists of a set oflabelled 
lauses p:C where p is in the interval [0,1℄ andC is a �rst-order range-restri
ted de�nite 
lause. Thispaper summarises the syntax, distributional semanti
sand proof te
hniques for SLPs and then dis
usses how astandard Indu
tive Logi
 Programming (ILP) system,Progol, has been modi�ed to support learning of SLPs.The resulting system 1) �nds an SLP with uniformprobability labels on ea
h de�nition and near-maximalBayes posterior probability and then 2) alters the prob-ability labels to further in
rease the posterior probabil-ity. Stage 1) is implemented within CProgol4.5, whi
hdi�ers from previous versions of Progol by allowinguser-de�ned evaluation fun
tions written in Prolog. Itis shown that maximising the Bayesian posterior fun
-tion involves �nding SLPs with short derivations of theexamples. Sear
h pruning with the Bayesian evaluationfun
tion is 
arried out in the same way as in previousversions of CProgol. The system is demonstrated withworked examples involving the learning of probabilitydistributions over sequen
es as well as the learning ofsimple forms of un
ertain knowledge.Introdu
tionRepresentations of un
ertain knowledge 
an be dividedinto a) pro
edural des
riptions of sampling distribu-tions (eg. sto
hasti
 grammars (Lari & Young 1990)and Hidden Markov Models (HMMs)) and b) de
lara-tive representations of un
ertain statements (eg. prob-abilisti
 logi
s (Fagin & Halpern 1989) and RelationalBayes' nets (Jaeger 1997)). Sto
hasti
 Logi
 Programs(SLPs) (Muggleton 1996) were introdu
ed originally asa way of lifting sto
hasti
 grammars (type a representa-tions) to the level of �rst-order Logi
 Programs (LPs).Later Cussens (Cussens 1999) showed that SLPs 
anbe used to represent undire
ted Bayes' nets (type brepresentations). SLPs are presently used (Muggleton2000) to de�ne distributions for sampling within Indu
-tive Logi
 Programming (ILP) (Muggleton 1999a).Copyright 

 2000, Ameri
an Asso
iation for Arti�
ial In-telligen
e (www.aaai.org). All rights reserved.

Previous papers des
ribing SLPs have 
on
entratedon their pro
edural (sampling) interpretation. This pa-per �rst summarises the semanti
s and proof te
hniquesfor SLPs. The paper then des
ribes a method for learn-ing SLPs from examples and ba
kground knowledge.The paper is organised as follows. Se
tion introdu
esstandard de�nitions for LPs. The syntax, semanti
sand proof te
hniques for SLPs are given in Se
tion .In
omplete SLPs are shown to have multiple 
onsistentdistributional models. Se
tion introdu
es a frameworkfor learning SLPs and dis
usses issues involved with
onstru
tion of the underlying LP as well as estima-tion of the probability labels. An overview of the ILPsystem Progol (Muggleton 1995) is given in Se
tion .Se
tion des
ribes the me
hanism whi
h allows user-de�ned evaluation fun
tions in Progol4.5 and derivesthe user-de�ned fun
tion for learning SLPs. Workedexamples of learning SLPs are then given in Se
tion .Se
tion 
on
ludes and dis
usses further work.LPsThe following summarises the standard syntax, seman-ti
s and proof te
hniques for LPs (see (Lloyd 1987)).Syntax of LPsA variable is denoted by an upper 
ase letter followedby lower 
ase letters and digits. Predi
ate and fun
tionsymbols are denoted by a lower 
ase letter followed bylower 
ase letters and digits. A variable is a term, anda fun
tion symbol immediately followed by a bra
ketedn-tuple of terms is a term. In the 
ase that n is zerothe fun
tion symbol is a 
onstant and is written withoutbra
kets. Thus f(g(X); h) is a term when f , g and h arefun
tion symbols, X is a variable and h is a 
onstant. Apredi
ate symbol immediately followed by a bra
kettedn-tuple of terms is 
alled an atomi
 formula, or atom.The negation symbol is: :. Both a and :a are literalswhenever a is an atom. In this 
ase a is 
alled a posi-tive literal and :a is 
alled a negative literal. A 
lauseis a �nite set of literals, and is treated as a universallyquanti�ed disjun
tion of those literals. A 
lause is saidto be unit if it 
ontains exa
tly one atom. A �nite setof 
lauses is 
alled a 
lausal theory and is treated as a
onjun
tion of those 
lauses. Literals, 
lauses, 
lausal
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theories, True and False are all well-formed-formulas(w�s). A w� or a term is said to be ground wheneverit 
ontains no variables. A Horn 
lause is a 
lause 
on-taining at most one positive literal. A de�nite 
lauseis a 
lause 
ontaining exa
tly one positive literal and iswritten as h  b1; ::; bn where h is the positive literal,or head and the bi are negative literals, whi
h together
onstitute the body of the 
lause. A de�nite 
lause forwhi
h all the variables in the head appear at least on
ein the body is 
alled range-restri
ted. A non-de�niteHorn 
lause is 
alled a goal and is written  b1; ::; bn.A Horn theory is a 
lausal theory 
ontaining only Horn
lauses. A de�nite program is a 
lausal theory 
ontain-ing only de�nite 
lauses. A range-restri
ted de�niteprogram is a de�nite program in whi
h all 
lauses arerange-restri
ted.Semanti
s of LPsLet � = fv1=t1; ::; vn=tng. � is said to be a substitutionwhen ea
h vi is a variable and ea
h ti is a term, and forno distin
t i and j is vi the same as vj . Greek lower-
ase letters are used to denote substitutions. � is saidto be ground when all ti are ground. Let E be a w�or a term and � = fv1=t1; ::; vn=tng be a substitution.The instantiation of E by �, written E�, is formed byrepla
ing every o

urren
e of vi in E by ti. E� is aninstan
e of E. Clause C �-subsumes 
lauseD, orC � Di� there exists a substitution theta su
h that C� � D.A �rst-order language L is a set of w�s whi
h 
anbe formed from a �xed and �nite set of predi
ate sym-bols, fun
tion symbols and variables. A set of groundliterals I is 
alled an L-interpretation (or simply inter-pretation) in the 
ase that it 
ontains either a or :a forea
h ground atom a in L. Let M be an interpretationand C = h  B be a de�nite 
lause in L. M is saidto be an L-model (or simply model) of C i� for everyground instan
e h0  B0 of C in L B0 � M impliesh0 2M . M is a model of Horn theory P wheneverM isa model of ea
h 
lause in P . P is said to be satis�ableif it has at least one model and unsatis�able otherwise.Suppose L is 
hosen to be the smallest �rst-order lan-guage involving at least one 
onstant and the predi
ateand fun
tion symbols of Horn theory P . In this 
asean interpretation is 
alled a Herbrand interpretation ofP and the ground atomi
 subset of L is 
alled the Her-brand Base of P . I is 
alled a Herbrand model of Horntheory P when I is both Herbrand and a model of P .A

ording to Herbrand's theorem P is satis�able i� ithas a Herbrand model. Let F and G be two w�s. Wesay that F entails G, or F j= G, i� every model of F isa model of G.Proof for LPsAn inferen
e rule I = F ! G states that w� F 
anbe rewritten by w� G. We say F `I G i� there existsa series of appli
ations of I whi
h transform F to G.I is said to be sound i� for ea
h F `I G always im-plies F j= G and 
omplete when F j= G always implies

F `I G. I is said to be refutation 
omplete if I is 
om-plete with G restri
ted to False. The substitution � issaid to be the uni�er of the atoms a and a0 whenevera� = a0�. � is the most general uni�er (mgu) of a anda0 if and only if for all uni�ers 
 of a and a0 there existsa substitution Æ su
h that (a�)Æ = a
. The resolutioninferen
e rule is as follows. ((C nfag)[ (D nf:a0g))� issaid to be the resolvent of the 
lauses C andD wheneverC and D have no 
ommon variables, a 2 C, :a0 2 Dand � is the mgu of a and a0. Suppose P is a de�niteprogram and G is a goal. Resolution is linear whenD is restri
ted to 
lauses in P and C is either G orthe resolvent of another linear resolution. The resol-vent of su
h a linear resolution is another goal. Assum-ing the literals in 
lauses are ordered, a linear resolu-tion is SLD when the literal 
hosen to resolve on is the�rst in C. An SLD refutation from P is a sequen
e ofsu
h SLD linear resolutions, whi
h 
an be representedby DP;G = hG;C1; ::; Cni where ea
h Ci is in P andthe last resolvent is the empty 
lause (ie. False). Theanswer substitution is �P;G = �1�2::�n where ea
h �iis the substitution 
orresponding with the resolutioninvolving Ci in DP;G. If P is range-restri
ted then�P;G will be ground. SLD resolution is known to beboth sound and refutation 
omplete for de�nite pro-grams. Thus for a range-restri
ted de�nite program Pand ground atom a it 
an be shown that P j= a by show-ing that P; a `SLD False. The Negation-by-Failure(NF) inferen
e rule says that P; a 6`SLD False impliesP `SLDNF :a. SLPsSyntax of SLPsAn SLP S is a set of labelled 
lauses p:C where p is aprobability (ie. a number in the range [0; 1℄) and C is a�rst-order range-restri
ted de�nite 
lause1. The subsetSp of 
lauses in S with predi
ate symbol p in the headis 
alled the de�nition of p. For ea
h de�nition Sp thesum of probability labels �p must be at most 1. S issaid to be 
omplete if �p = 1 for ea
h p and in
om-plete otherwise. P (S) represents the de�nite program
onsisting of all the 
lauses in S, with labels removed.Example 1 Unbiased 
oin. The following SLP is
omplete and represents a 
oin whi
h 
omes up eitherheads or tails with probability 0.5.S1 = � 0:5 : 
oin(head) 0:5 : 
oin(tail) �S1 is a simple example of a sampling distribution2.1Cussens (Cussens 1999) 
onsiders a less restri
ted de�-nition of SLPs.2Se
tion provides a more 
omplex sampling distributiona language by atta
hing probability labels to produ
tions ofa grammar. The grammar is en
oded as a range-restri
tedde�nite program.
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Example 2 Pet example. The following SLP is in-
omplete.S2 = � 0:3 : likes(X;Y ) pet(Y;X); pet(Z;X);
at(Y );mouse(Z) �S2 shows how statements of the form Pr(P (~x)jQ(~y)) =p 
an be en
oded within an SLP, in this 
asePr(likes(X,Y)j. . . )) = 0:3.Proof for SLPsA Sto
hasti
 SLD (SSLD) refutation is a sequen
eDS;G = h1:G; p1:C1; ::; pn:Cni in whi
h G is a goal,ea
h pi:Ci 2 S and DP (S);G = hG;C1; ::; Cni is anSLD refutation from P (S). SSLD refutation repre-sents the repeated appli
ation of the SSLD inferen
erule. This takes a goal p:G and a labelled 
lause q:Cand produ
es the labelled goal pq:R, where R is theSLD resolvent of G and C. The answer probabil-ity of DS;G is Q(DS;G) = Qni=1 pi. The in
ompleteprobability of any ground atom a with respe
t to S isQ(ajS) = PDS;( a) Q(DS;( a)). We 
an state this asS `SSLD Q(ajS) � Pr(ajS) � 1, where Pr(ajS) repre-sents the 
onditional probability of a given S.Remark 3 In
omplete probabilities. If a is aground atom with predi
ate symbol p and the de�nitionSp in SLP S is in
omplete then Q(ajS) � �p.Proof. Suppose the probability labels on 
lauses in Spare p1; ::; pn then Q(ajS) = p1q1 + ::+ pnqn where ea
hqi is a sum of produ
ts for whi
h 0 � qi � 1. ThusQ(ajS) � p1 + ::+ pn = �p.Semanti
s of SLPsIn this se
tion we introdu
e the \normal" semanti
s ofSLPs. Suppose L is a �rst-order language and Dp is aprobability distribution over the ground atoms of p inL. If I is a ve
tor 
onsisting of one su
h Dp for everyp in L then I is 
alled a distributional L-interpretation(or simply interpretation). If a 2 L is an atom withpredi
ate symbol p and I is an interpretation then I(a)is the probability of a a

ording to Dp in I . Suppose Lis 
hosen to be the smallest �rst-order language involv-ing at least one 
onstant and the predi
ate and fun
tionsymbols of Horn theory P (S). In this 
ase an interpre-tation is 
alled a distributional Herbrand interpretationof S (or simply Herbrand interpretation).De�nition 4 An interpretation M is a distributionalL-model (or simply model) of SLP S i� Q(ajS) �M(a)for ea
h ground atom a in L3.Again if M is a model of S and M is Herbrand withrespe
t to S thenM is a distributional Herbrand modelof S (or simply Herbrand model).3It might seem unreasonable to de�ne semanti
s in termsof proofs in this way. However, it should be noted thatQ(ajS) represents a potentially in�nite summation of theprobabilities of individual SSLD derivations. This is analo-gous to de�ning the satis�ability of a �rst-order formula interms of an in�nite boolean expression derived from truthtables of the 
onne
tives

Example 5 Models.S = � 0:5:p(X) q(X)0:5:q(a) �Q(p(a)jS) = 0:25 and Q(q(a)jS) = 0:5. L has predi
atesymbols p; q and 
onstant a; b.I1 = � f1:p(a); 0:p(b)gf1:q(a); 0:q(b) �I1 is a model of S.I2 = � f0:1:p(a); 0:9:p(b)gf0:5:q(a); 0:5:q(b) �I2 is not a model of S.Suppose S; T are SLPs. As usual we write S j= T i�every model of S is a model of T .Learning SLPsBayes' fun
tionThis se
tion des
ribes a framework for learning a 
om-plete SLP S from examples E based on maximisingBayesian posterior probability p(SjE). Below it is as-sumed that E 
onsists of ground unit 
lauses. The pos-terior probability of S given E 
an be expressed usingBayes' theorem as follows.p(SjE) = p(S)p(EjS)p(E) (1)p(S) represents a prior probability distribution overSLPs. If we suppose (as is normal) that the ei are
hosen randomly and independently from some distri-bution D over the instan
e spa
e X then p(EjS) =Qmi=1 p(eijS). We assume that p(eijS) = Q(eijS) (seeSe
tion ). p(E) is a normalising 
onstant. Sin
e theprobabilities involved in the Bayes' fun
tion tend tobe small it makes sense to re-express Equation 1 ininformation-theoreti
 terms by applying a negative logtransformation as follows.�log2p(SjE) = �log2p(S)� mXi=1 [log2p(eijS)℄ + 
 (2)Here �log2p(S) 
an be viewed as expressing thesize (number of bits) of S. The quantity�Pmi=1[log2p(eijS)℄ 
an be viewed as the sum of sizes(number of bits) of the derivations of ea
h ei from S.
 is a 
onstant representing log2p(E). Note that thisapproa
h is similar to that des
ribed in (Muggleton2000), di�ering only in the de�nition of p(eijS). Theapproa
h in (Muggleton 2000) uses p(eijS) to favourLP hypotheses with low generality, while Equation 2favours SLP hypotheses with a low mean derivationsize. Surprisingly this makes the Bayes' fun
tion forlearning SLPs appropriate for �nding LPs whi
h havelow time-
omplexity with respe
t to the examples. Forinstan
e, this fun
tion would prefer an SLP whose un-derlying LP represented qui
k-sort over one whose un-derlying LP represented insertion-sort sin
e the meanproof lengths of the former would be lower than thoseof the latter.
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Sear
h strategyThe previous subse
tion leaves open the question of howhypotheses are to be 
onstru
ted and how sear
h is tobe ordered. The approa
h taken in this paper involvestwo stages.1. LP 
onstru
tion. Choose an SLP S with uniformprobability labels on ea
h de�nition and near maxi-mal posterior probability with respe
t to E.2. Parameter estimation. Vary the labels on S toin
rease the posterior probability with respe
t to E.Progol4.5 is used to implement the sear
h in Stage 1.Stage 2 is implemented using an algorithm whi
h as-signs a label to ea
h 
lause C in S a

ording to theLapla
e 
orre
ted relative frequen
y with whi
h C isinvolved in proofs of the positive examples in E.Limitations of strategyThe overall strategy is sub-optimal in the followingways: a) the implementation of Stage 1 is approximatesin
e it involves a greedy 
lause-by-
lause 
onstru
tionof the SLPs, b) the implementation of Stage 2 is onlyoptimal in the 
ase that ea
h positive example has aunique derivation.Overview of ProgolILP systems take LPs representing ba
kground knowl-edge B and examples E and attempt to �nd the sim-plest 
onsistent hypothesis H su
h that the followingholds. B ^H j= E (3)This se
tion brie
y des
ribes the Mode Dire
ted InverseEntailment (MDIE) approa
h used in Progol (Muggle-ton 1995). Equation 3 is equivalent for all B, H and Eto the following. B ^ E j= HAssuming that H and E are ground and that ? is the
onjun
tion of ground literals whi
h are true in all mod-els of B ^E we have the following.B ^ E j= ?Sin
e H is true in every model of B^E it must 
ontaina subset of the ground literals in ?. Hen
eB ^E j= ? j= Hand so for all H H j= ? (4)The set of solutions for H 
onsidered by Progol is re-stri
ted in a number of ways. Firstly, ? is assumed to
ontain only one positive literal and a �nite number ofnegative literals. The set of negative literals in ? isdetermined by mode de
larations (statements 
on
ern-ing the input/output nature of predi
ate arguments andtheir types) and user-de�ned restri
tions on the depthsof variable 
hains.Progol uses a 
overing algorithm whi
h repeatedly
hooses an example e, forms an asso
iated 
lause ? and

sear
hes for the 
lause whi
h maximises the information
ompression within the following bounded sub-latti
e.2 � H � ?The hypothesised 
lause H is then added to the 
lausebase and the examples 
overed by H are removed. Thealgorithm terminates when all examples have been 
ov-ered. In the original version of Progol (CProgol4.1)(Muggleton 1995) the sear
h for ea
h 
lause H involvesmaximising the `
ompression' fun
tionf = (p� (
+ n+ h))where p and n are the number of positive and negativeexamples 
overed by H , 
 is the number of literals inH , and h is the minimum number of additional literalsrequired to 
omplete the input/output variable 
hainsin H (
omputed by 
onsidering variable 
hains in ?).In later versions of Progol the following fun
tion wasused instead to redu
e the degree of greediness in thesear
h. f = mp (p� (
+ n+ h)) (5)This fun
tion estimates the overall global 
ompressionexpe
ted of the �nal hypothesised set of 
lauses, ex-trapolated from lo
al 
overage and size properties ofthe 
lause under 
onstru
tion. A hypothesised 
lauseH is pruned, together with all its more spe
i�
 re�ne-ments, if either 1� 
p � 0 (6)or there exists a previously evaluated 
lause H 0 su
hthatH 0 is an a

eptable solution (
overs below the noisethreshold of negative examples and the input/outputvariable 
hains are 
omplete) and1� 
p � 1� 
0 + n0 + h0p0 (7)where p; 
 are asso
iated with H and p0; n0; 
0; h0 areasso
iated with H 0.User-de�ned evaluation in Progol4.5User-de�ned evaluation fun
tions in Progol4.5 are im-plemented by allowing rede�nition in Prolog of p, nand 
 from Equation 5. Figure 1 shows the 
on-vention for names used in Progol4.5 for the built-inand user-de�ned fun
tions for these variables. Thoughthis approa
h to allowing de�nition of the evaluationfun
tion is indire
t, it means that the general 
ri-teria used in Progol for pruning the sear
h (see In-equalities 6 and 7) 
an be applied unaltered as longas user pos 
over and user neg 
over monotoni
ally de-
rease and user hyp size monotoni
ally in
reases withdownward re�nement (addition of body literals) to thehypothesised 
lause. For learning SLPs these fun
tionsare derived below.
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Variable Built-in User-de�nedp pos 
over(P1) user pos 
over(P2)n neg 
over(N1) user neg 
over(N2)
 hyp size(C1) user hyp size(C2)h hyp rem(H1) user hyp rem(H2)Figure 1: Built-in and user de�ned predi
ates for someof the variables from Equation 5.Equation 2 
an be rewritten in terms of an informa-tion fun
tion I asI(SjE) = I(S)� mXi=1 I(eijS) + 
 (8)where I(x) = �log2x. The degree of 
ompressiona
hieved by an hypothesis is 
omputed by subtra
tingI(SjE) from I(S0 = EjE), the posterior informationof the hypothesis 
onsisting of returning ungeneralisedexamples.I(S0 = EjE) = I(E) + I(EjS0 = E) + 
= m+mlog2m+ 
= m(1 + log2m) + 
 (9)The 
ompression indu
ed by S with respe
t to E is nowsimply the di�eren
e between Equations 9 and 8, whi
his as follows.m(1 + log2m)� I(S) + mXi=1 I(eijS)= mp (p(1 + log2m)� I(H) + pXj=1 I(ej jH)) (10)In Equation 10 extrapolation is made from the p posi-tive examples 
overed by hypothesised 
lause H . Com-paring Equations 5 and 10 the user-de�ned fun
tionsof Figure 1 are as follows (p; n; 
; h represent built-infun
tions and p0; n0; 
0; h0 represent their user-de�ned
ounter-parts). p0 = p(1 + log2m) (11)n0 = mXj=1 I(ej jH) + n
0 = 
h0 = hWorked examplesThe sour
e 
ode of Progol4.5 together with the input�les for the following worked examples 
an be obtainedfrom ftp://ftp.
s.york.a
.uk/pub/mlg/progol4.5/ .Animal taxonomyFigure 2 shows the examples and ba
kground knowl-edge for an example set whi
h involves learning taxo-nomi
 des
riptions of animals. Following Stage 1 (Se
-

Examples 
lass(dog,mammal).
lass(trout,�sh).: : :Ba
kground has 
overing(dog,hair).knowledge : : :has legs(dolphin,0).: : :Figure 2: Examples and ba
kground knowledge for an-imal taxonomy.Examples s([the,man,walks,the,dog℄,[℄).s([the,dog,walks,to,the,man℄,[℄).: : :Ba
kground np(S1,S2) :- det(S1,S3), noun(S3,S2).knowledge : : :noun([manjS℄,S).: : :Figure 3: Examples and ba
kground knowledge for Sim-ple English Grammar.tion ) the SLP 
onstru
ted has uniform probability la-bels as follows4.0.200: 
lass(A,reptile) :-has_legs(A,4), has_eggs(A).0.200: 
lass(A,mammal) :- has_milk(A).0.200: 
lass(A,fish) :- has_gills(A).0.200: 
lass(A,reptile) :-has_legs(A,0), habitat(A,land).0.200: 
lass(A,bird) :-has_
overing(A,feathers).Following Stage 2 the labels are altered as follows tore
e
t the distribution of 
lass types within the trainingdata.0.238: 
lass(A,reptile) :-has_legs(A,4), has_eggs(A).0.238: 
lass(A,mammal) :- has_milk(A).0.238: 
lass(A,fish) :- has_gills(A).0.095: 
lass(A,reptile) :-has_legs(A,0), habitat(A,land).0.190: 
lass(A,bird) :-has_
overing(A,feathers).Simple English grammarFigure 3 shows the examples and ba
kground knowl-edge for an example set whi
h involves learning a simpleEnglish grammar. Following Stage 2 the learned SLPis as follows.0.438: s(A,B) :- np(A,C), vp(C,D),np(D,B).4For this example and the next the value of p0 (Equa-tion 11) was in
reased by a fa
tor of 4 to a
hieve positive
ompression
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0.562: s(A,B) :- np(A,C), verb(C,D),np(D,E), prep(E,F), np(F,B).Con
lusionThis paper des
ribes a method for learning SLPs fromexamples and ba
kground knowledge. The method isbased on an approximate Bayes MAP (Maximum APosterior probability) algorithm. The implementationwithin Progol4.5 is eÆ
ient and produ
es meaningfulsolutions on simple domains. However, as pointed outin Se
tion the method does not �nd optimal solutions.The author views the method des
ribed as a �rst at-tempt at a hard problem. It is believed that improve-ments to the sear
h strategy 
an be made. This is aninteresting topi
 for further resear
h.The author believes that learning of SLPs is of po-tential interest in all domains in whi
h ILP has had su
-
ess (Muggleton 1999a). In these domains it is believedthat SLPs would the advantage over LPs of produ
-ing predi
tions with atta
hed degrees of 
ertainty. Inthe 
ase of multiple predi
tions, the probability labelswould allow for relative ranking. This is of parti
u-lar importan
e for Natural Language domains, thoughwould also have general appli
ation in Bioinformati
s(Muggleton 1999b).A
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