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Learning Stohasti Logi ProgramsStephen MuggletonDepartment of Computer Siene,University of York,York, YO1 5DD,United Kingdom.AbstratStohasti Logi Programs (SLPs) have been shown tobe a generalisation of Hidden Markov Models (HMMs),stohasti ontext-free grammars, and direted Bayes'nets. A stohasti logi program onsists of a set oflabelled lauses p:C where p is in the interval [0,1℄ andC is a �rst-order range-restrited de�nite lause. Thispaper summarises the syntax, distributional semantisand proof tehniques for SLPs and then disusses how astandard Indutive Logi Programming (ILP) system,Progol, has been modi�ed to support learning of SLPs.The resulting system 1) �nds an SLP with uniformprobability labels on eah de�nition and near-maximalBayes posterior probability and then 2) alters the prob-ability labels to further inrease the posterior probabil-ity. Stage 1) is implemented within CProgol4.5, whihdi�ers from previous versions of Progol by allowinguser-de�ned evaluation funtions written in Prolog. Itis shown that maximising the Bayesian posterior fun-tion involves �nding SLPs with short derivations of theexamples. Searh pruning with the Bayesian evaluationfuntion is arried out in the same way as in previousversions of CProgol. The system is demonstrated withworked examples involving the learning of probabilitydistributions over sequenes as well as the learning ofsimple forms of unertain knowledge.IntrodutionRepresentations of unertain knowledge an be dividedinto a) proedural desriptions of sampling distribu-tions (eg. stohasti grammars (Lari & Young 1990)and Hidden Markov Models (HMMs)) and b) delara-tive representations of unertain statements (eg. prob-abilisti logis (Fagin & Halpern 1989) and RelationalBayes' nets (Jaeger 1997)). Stohasti Logi Programs(SLPs) (Muggleton 1996) were introdued originally asa way of lifting stohasti grammars (type a representa-tions) to the level of �rst-order Logi Programs (LPs).Later Cussens (Cussens 1999) showed that SLPs anbe used to represent undireted Bayes' nets (type brepresentations). SLPs are presently used (Muggleton2000) to de�ne distributions for sampling within Indu-tive Logi Programming (ILP) (Muggleton 1999a).Copyright  2000, Amerian Assoiation for Arti�ial In-telligene (www.aaai.org). All rights reserved.

Previous papers desribing SLPs have onentratedon their proedural (sampling) interpretation. This pa-per �rst summarises the semantis and proof tehniquesfor SLPs. The paper then desribes a method for learn-ing SLPs from examples and bakground knowledge.The paper is organised as follows. Setion introduesstandard de�nitions for LPs. The syntax, semantisand proof tehniques for SLPs are given in Setion .Inomplete SLPs are shown to have multiple onsistentdistributional models. Setion introdues a frameworkfor learning SLPs and disusses issues involved withonstrution of the underlying LP as well as estima-tion of the probability labels. An overview of the ILPsystem Progol (Muggleton 1995) is given in Setion .Setion desribes the mehanism whih allows user-de�ned evaluation funtions in Progol4.5 and derivesthe user-de�ned funtion for learning SLPs. Workedexamples of learning SLPs are then given in Setion .Setion onludes and disusses further work.LPsThe following summarises the standard syntax, seman-tis and proof tehniques for LPs (see (Lloyd 1987)).Syntax of LPsA variable is denoted by an upper ase letter followedby lower ase letters and digits. Prediate and funtionsymbols are denoted by a lower ase letter followed bylower ase letters and digits. A variable is a term, anda funtion symbol immediately followed by a braketedn-tuple of terms is a term. In the ase that n is zerothe funtion symbol is a onstant and is written withoutbrakets. Thus f(g(X); h) is a term when f , g and h arefuntion symbols, X is a variable and h is a onstant. Aprediate symbol immediately followed by a brakettedn-tuple of terms is alled an atomi formula, or atom.The negation symbol is: :. Both a and :a are literalswhenever a is an atom. In this ase a is alled a posi-tive literal and :a is alled a negative literal. A lauseis a �nite set of literals, and is treated as a universallyquanti�ed disjuntion of those literals. A lause is saidto be unit if it ontains exatly one atom. A �nite setof lauses is alled a lausal theory and is treated as aonjuntion of those lauses. Literals, lauses, lausal
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theories, True and False are all well-formed-formulas(w�s). A w� or a term is said to be ground wheneverit ontains no variables. A Horn lause is a lause on-taining at most one positive literal. A de�nite lauseis a lause ontaining exatly one positive literal and iswritten as h  b1; ::; bn where h is the positive literal,or head and the bi are negative literals, whih togetheronstitute the body of the lause. A de�nite lause forwhih all the variables in the head appear at least onein the body is alled range-restrited. A non-de�niteHorn lause is alled a goal and is written  b1; ::; bn.A Horn theory is a lausal theory ontaining only Hornlauses. A de�nite program is a lausal theory ontain-ing only de�nite lauses. A range-restrited de�niteprogram is a de�nite program in whih all lauses arerange-restrited.Semantis of LPsLet � = fv1=t1; ::; vn=tng. � is said to be a substitutionwhen eah vi is a variable and eah ti is a term, and forno distint i and j is vi the same as vj . Greek lower-ase letters are used to denote substitutions. � is saidto be ground when all ti are ground. Let E be a w�or a term and � = fv1=t1; ::; vn=tng be a substitution.The instantiation of E by �, written E�, is formed byreplaing every ourrene of vi in E by ti. E� is aninstane of E. Clause C �-subsumes lauseD, orC � Di� there exists a substitution theta suh that C� � D.A �rst-order language L is a set of w�s whih anbe formed from a �xed and �nite set of prediate sym-bols, funtion symbols and variables. A set of groundliterals I is alled an L-interpretation (or simply inter-pretation) in the ase that it ontains either a or :a foreah ground atom a in L. Let M be an interpretationand C = h  B be a de�nite lause in L. M is saidto be an L-model (or simply model) of C i� for everyground instane h0  B0 of C in L B0 � M impliesh0 2M . M is a model of Horn theory P wheneverM isa model of eah lause in P . P is said to be satis�ableif it has at least one model and unsatis�able otherwise.Suppose L is hosen to be the smallest �rst-order lan-guage involving at least one onstant and the prediateand funtion symbols of Horn theory P . In this asean interpretation is alled a Herbrand interpretation ofP and the ground atomi subset of L is alled the Her-brand Base of P . I is alled a Herbrand model of Horntheory P when I is both Herbrand and a model of P .Aording to Herbrand's theorem P is satis�able i� ithas a Herbrand model. Let F and G be two w�s. Wesay that F entails G, or F j= G, i� every model of F isa model of G.Proof for LPsAn inferene rule I = F ! G states that w� F anbe rewritten by w� G. We say F `I G i� there existsa series of appliations of I whih transform F to G.I is said to be sound i� for eah F `I G always im-plies F j= G and omplete when F j= G always implies

F `I G. I is said to be refutation omplete if I is om-plete with G restrited to False. The substitution � issaid to be the uni�er of the atoms a and a0 whenevera� = a0�. � is the most general uni�er (mgu) of a anda0 if and only if for all uni�ers  of a and a0 there existsa substitution Æ suh that (a�)Æ = a. The resolutioninferene rule is as follows. ((C nfag)[ (D nf:a0g))� issaid to be the resolvent of the lauses C andD wheneverC and D have no ommon variables, a 2 C, :a0 2 Dand � is the mgu of a and a0. Suppose P is a de�niteprogram and G is a goal. Resolution is linear whenD is restrited to lauses in P and C is either G orthe resolvent of another linear resolution. The resol-vent of suh a linear resolution is another goal. Assum-ing the literals in lauses are ordered, a linear resolu-tion is SLD when the literal hosen to resolve on is the�rst in C. An SLD refutation from P is a sequene ofsuh SLD linear resolutions, whih an be representedby DP;G = hG;C1; ::; Cni where eah Ci is in P andthe last resolvent is the empty lause (ie. False). Theanswer substitution is �P;G = �1�2::�n where eah �iis the substitution orresponding with the resolutioninvolving Ci in DP;G. If P is range-restrited then�P;G will be ground. SLD resolution is known to beboth sound and refutation omplete for de�nite pro-grams. Thus for a range-restrited de�nite program Pand ground atom a it an be shown that P j= a by show-ing that P; a `SLD False. The Negation-by-Failure(NF) inferene rule says that P; a 6`SLD False impliesP `SLDNF :a. SLPsSyntax of SLPsAn SLP S is a set of labelled lauses p:C where p is aprobability (ie. a number in the range [0; 1℄) and C is a�rst-order range-restrited de�nite lause1. The subsetSp of lauses in S with prediate symbol p in the headis alled the de�nition of p. For eah de�nition Sp thesum of probability labels �p must be at most 1. S issaid to be omplete if �p = 1 for eah p and inom-plete otherwise. P (S) represents the de�nite programonsisting of all the lauses in S, with labels removed.Example 1 Unbiased oin. The following SLP isomplete and represents a oin whih omes up eitherheads or tails with probability 0.5.S1 = � 0:5 : oin(head) 0:5 : oin(tail) �S1 is a simple example of a sampling distribution2.1Cussens (Cussens 1999) onsiders a less restrited de�-nition of SLPs.2Setion provides a more omplex sampling distributiona language by attahing probability labels to produtions ofa grammar. The grammar is enoded as a range-restritedde�nite program.
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Example 2 Pet example. The following SLP is in-omplete.S2 = � 0:3 : likes(X;Y ) pet(Y;X); pet(Z;X);at(Y );mouse(Z) �S2 shows how statements of the form Pr(P (~x)jQ(~y)) =p an be enoded within an SLP, in this asePr(likes(X,Y)j. . . )) = 0:3.Proof for SLPsA Stohasti SLD (SSLD) refutation is a sequeneDS;G = h1:G; p1:C1; ::; pn:Cni in whih G is a goal,eah pi:Ci 2 S and DP (S);G = hG;C1; ::; Cni is anSLD refutation from P (S). SSLD refutation repre-sents the repeated appliation of the SSLD inferenerule. This takes a goal p:G and a labelled lause q:Cand produes the labelled goal pq:R, where R is theSLD resolvent of G and C. The answer probabil-ity of DS;G is Q(DS;G) = Qni=1 pi. The inompleteprobability of any ground atom a with respet to S isQ(ajS) = PDS;( a) Q(DS;( a)). We an state this asS `SSLD Q(ajS) � Pr(ajS) � 1, where Pr(ajS) repre-sents the onditional probability of a given S.Remark 3 Inomplete probabilities. If a is aground atom with prediate symbol p and the de�nitionSp in SLP S is inomplete then Q(ajS) � �p.Proof. Suppose the probability labels on lauses in Spare p1; ::; pn then Q(ajS) = p1q1 + ::+ pnqn where eahqi is a sum of produts for whih 0 � qi � 1. ThusQ(ajS) � p1 + ::+ pn = �p.Semantis of SLPsIn this setion we introdue the \normal" semantis ofSLPs. Suppose L is a �rst-order language and Dp is aprobability distribution over the ground atoms of p inL. If I is a vetor onsisting of one suh Dp for everyp in L then I is alled a distributional L-interpretation(or simply interpretation). If a 2 L is an atom withprediate symbol p and I is an interpretation then I(a)is the probability of a aording to Dp in I . Suppose Lis hosen to be the smallest �rst-order language involv-ing at least one onstant and the prediate and funtionsymbols of Horn theory P (S). In this ase an interpre-tation is alled a distributional Herbrand interpretationof S (or simply Herbrand interpretation).De�nition 4 An interpretation M is a distributionalL-model (or simply model) of SLP S i� Q(ajS) �M(a)for eah ground atom a in L3.Again if M is a model of S and M is Herbrand withrespet to S thenM is a distributional Herbrand modelof S (or simply Herbrand model).3It might seem unreasonable to de�ne semantis in termsof proofs in this way. However, it should be noted thatQ(ajS) represents a potentially in�nite summation of theprobabilities of individual SSLD derivations. This is analo-gous to de�ning the satis�ability of a �rst-order formula interms of an in�nite boolean expression derived from truthtables of the onnetives

Example 5 Models.S = � 0:5:p(X) q(X)0:5:q(a) �Q(p(a)jS) = 0:25 and Q(q(a)jS) = 0:5. L has prediatesymbols p; q and onstant a; b.I1 = � f1:p(a); 0:p(b)gf1:q(a); 0:q(b) �I1 is a model of S.I2 = � f0:1:p(a); 0:9:p(b)gf0:5:q(a); 0:5:q(b) �I2 is not a model of S.Suppose S; T are SLPs. As usual we write S j= T i�every model of S is a model of T .Learning SLPsBayes' funtionThis setion desribes a framework for learning a om-plete SLP S from examples E based on maximisingBayesian posterior probability p(SjE). Below it is as-sumed that E onsists of ground unit lauses. The pos-terior probability of S given E an be expressed usingBayes' theorem as follows.p(SjE) = p(S)p(EjS)p(E) (1)p(S) represents a prior probability distribution overSLPs. If we suppose (as is normal) that the ei arehosen randomly and independently from some distri-bution D over the instane spae X then p(EjS) =Qmi=1 p(eijS). We assume that p(eijS) = Q(eijS) (seeSetion ). p(E) is a normalising onstant. Sine theprobabilities involved in the Bayes' funtion tend tobe small it makes sense to re-express Equation 1 ininformation-theoreti terms by applying a negative logtransformation as follows.�log2p(SjE) = �log2p(S)� mXi=1 [log2p(eijS)℄ +  (2)Here �log2p(S) an be viewed as expressing thesize (number of bits) of S. The quantity�Pmi=1[log2p(eijS)℄ an be viewed as the sum of sizes(number of bits) of the derivations of eah ei from S. is a onstant representing log2p(E). Note that thisapproah is similar to that desribed in (Muggleton2000), di�ering only in the de�nition of p(eijS). Theapproah in (Muggleton 2000) uses p(eijS) to favourLP hypotheses with low generality, while Equation 2favours SLP hypotheses with a low mean derivationsize. Surprisingly this makes the Bayes' funtion forlearning SLPs appropriate for �nding LPs whih havelow time-omplexity with respet to the examples. Forinstane, this funtion would prefer an SLP whose un-derlying LP represented quik-sort over one whose un-derlying LP represented insertion-sort sine the meanproof lengths of the former would be lower than thoseof the latter.
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Searh strategyThe previous subsetion leaves open the question of howhypotheses are to be onstruted and how searh is tobe ordered. The approah taken in this paper involvestwo stages.1. LP onstrution. Choose an SLP S with uniformprobability labels on eah de�nition and near maxi-mal posterior probability with respet to E.2. Parameter estimation. Vary the labels on S toinrease the posterior probability with respet to E.Progol4.5 is used to implement the searh in Stage 1.Stage 2 is implemented using an algorithm whih as-signs a label to eah lause C in S aording to theLaplae orreted relative frequeny with whih C isinvolved in proofs of the positive examples in E.Limitations of strategyThe overall strategy is sub-optimal in the followingways: a) the implementation of Stage 1 is approximatesine it involves a greedy lause-by-lause onstrutionof the SLPs, b) the implementation of Stage 2 is onlyoptimal in the ase that eah positive example has aunique derivation.Overview of ProgolILP systems take LPs representing bakground knowl-edge B and examples E and attempt to �nd the sim-plest onsistent hypothesis H suh that the followingholds. B ^H j= E (3)This setion briey desribes the Mode Direted InverseEntailment (MDIE) approah used in Progol (Muggle-ton 1995). Equation 3 is equivalent for all B, H and Eto the following. B ^ E j= HAssuming that H and E are ground and that ? is theonjuntion of ground literals whih are true in all mod-els of B ^E we have the following.B ^ E j= ?Sine H is true in every model of B^E it must ontaina subset of the ground literals in ?. HeneB ^E j= ? j= Hand so for all H H j= ? (4)The set of solutions for H onsidered by Progol is re-strited in a number of ways. Firstly, ? is assumed toontain only one positive literal and a �nite number ofnegative literals. The set of negative literals in ? isdetermined by mode delarations (statements onern-ing the input/output nature of prediate arguments andtheir types) and user-de�ned restritions on the depthsof variable hains.Progol uses a overing algorithm whih repeatedlyhooses an example e, forms an assoiated lause ? and

searhes for the lause whih maximises the informationompression within the following bounded sub-lattie.2 � H � ?The hypothesised lause H is then added to the lausebase and the examples overed by H are removed. Thealgorithm terminates when all examples have been ov-ered. In the original version of Progol (CProgol4.1)(Muggleton 1995) the searh for eah lause H involvesmaximising the `ompression' funtionf = (p� (+ n+ h))where p and n are the number of positive and negativeexamples overed by H ,  is the number of literals inH , and h is the minimum number of additional literalsrequired to omplete the input/output variable hainsin H (omputed by onsidering variable hains in ?).In later versions of Progol the following funtion wasused instead to redue the degree of greediness in thesearh. f = mp (p� (+ n+ h)) (5)This funtion estimates the overall global ompressionexpeted of the �nal hypothesised set of lauses, ex-trapolated from loal overage and size properties ofthe lause under onstrution. A hypothesised lauseH is pruned, together with all its more spei� re�ne-ments, if either 1� p � 0 (6)or there exists a previously evaluated lause H 0 suhthatH 0 is an aeptable solution (overs below the noisethreshold of negative examples and the input/outputvariable hains are omplete) and1� p � 1� 0 + n0 + h0p0 (7)where p;  are assoiated with H and p0; n0; 0; h0 areassoiated with H 0.User-de�ned evaluation in Progol4.5User-de�ned evaluation funtions in Progol4.5 are im-plemented by allowing rede�nition in Prolog of p, nand  from Equation 5. Figure 1 shows the on-vention for names used in Progol4.5 for the built-inand user-de�ned funtions for these variables. Thoughthis approah to allowing de�nition of the evaluationfuntion is indiret, it means that the general ri-teria used in Progol for pruning the searh (see In-equalities 6 and 7) an be applied unaltered as longas user pos over and user neg over monotonially de-rease and user hyp size monotonially inreases withdownward re�nement (addition of body literals) to thehypothesised lause. For learning SLPs these funtionsare derived below.
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Variable Built-in User-de�nedp pos over(P1) user pos over(P2)n neg over(N1) user neg over(N2) hyp size(C1) user hyp size(C2)h hyp rem(H1) user hyp rem(H2)Figure 1: Built-in and user de�ned prediates for someof the variables from Equation 5.Equation 2 an be rewritten in terms of an informa-tion funtion I asI(SjE) = I(S)� mXi=1 I(eijS) +  (8)where I(x) = �log2x. The degree of ompressionahieved by an hypothesis is omputed by subtratingI(SjE) from I(S0 = EjE), the posterior informationof the hypothesis onsisting of returning ungeneralisedexamples.I(S0 = EjE) = I(E) + I(EjS0 = E) + = m+mlog2m+ = m(1 + log2m) +  (9)The ompression indued by S with respet to E is nowsimply the di�erene between Equations 9 and 8, whihis as follows.m(1 + log2m)� I(S) + mXi=1 I(eijS)= mp (p(1 + log2m)� I(H) + pXj=1 I(ej jH)) (10)In Equation 10 extrapolation is made from the p posi-tive examples overed by hypothesised lause H . Com-paring Equations 5 and 10 the user-de�ned funtionsof Figure 1 are as follows (p; n; ; h represent built-infuntions and p0; n0; 0; h0 represent their user-de�nedounter-parts). p0 = p(1 + log2m) (11)n0 = mXj=1 I(ej jH) + n0 = h0 = hWorked examplesThe soure ode of Progol4.5 together with the input�les for the following worked examples an be obtainedfrom ftp://ftp.s.york.a.uk/pub/mlg/progol4.5/ .Animal taxonomyFigure 2 shows the examples and bakground knowl-edge for an example set whih involves learning taxo-nomi desriptions of animals. Following Stage 1 (Se-

Examples lass(dog,mammal).lass(trout,�sh).: : :Bakground has overing(dog,hair).knowledge : : :has legs(dolphin,0).: : :Figure 2: Examples and bakground knowledge for an-imal taxonomy.Examples s([the,man,walks,the,dog℄,[℄).s([the,dog,walks,to,the,man℄,[℄).: : :Bakground np(S1,S2) :- det(S1,S3), noun(S3,S2).knowledge : : :noun([manjS℄,S).: : :Figure 3: Examples and bakground knowledge for Sim-ple English Grammar.tion ) the SLP onstruted has uniform probability la-bels as follows4.0.200: lass(A,reptile) :-has_legs(A,4), has_eggs(A).0.200: lass(A,mammal) :- has_milk(A).0.200: lass(A,fish) :- has_gills(A).0.200: lass(A,reptile) :-has_legs(A,0), habitat(A,land).0.200: lass(A,bird) :-has_overing(A,feathers).Following Stage 2 the labels are altered as follows toreet the distribution of lass types within the trainingdata.0.238: lass(A,reptile) :-has_legs(A,4), has_eggs(A).0.238: lass(A,mammal) :- has_milk(A).0.238: lass(A,fish) :- has_gills(A).0.095: lass(A,reptile) :-has_legs(A,0), habitat(A,land).0.190: lass(A,bird) :-has_overing(A,feathers).Simple English grammarFigure 3 shows the examples and bakground knowl-edge for an example set whih involves learning a simpleEnglish grammar. Following Stage 2 the learned SLPis as follows.0.438: s(A,B) :- np(A,C), vp(C,D),np(D,B).4For this example and the next the value of p0 (Equa-tion 11) was inreased by a fator of 4 to ahieve positiveompression
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0.562: s(A,B) :- np(A,C), verb(C,D),np(D,E), prep(E,F), np(F,B).ConlusionThis paper desribes a method for learning SLPs fromexamples and bakground knowledge. The method isbased on an approximate Bayes MAP (Maximum APosterior probability) algorithm. The implementationwithin Progol4.5 is eÆient and produes meaningfulsolutions on simple domains. However, as pointed outin Setion the method does not �nd optimal solutions.The author views the method desribed as a �rst at-tempt at a hard problem. It is believed that improve-ments to the searh strategy an be made. This is aninteresting topi for further researh.The author believes that learning of SLPs is of po-tential interest in all domains in whih ILP has had su-ess (Muggleton 1999a). In these domains it is believedthat SLPs would the advantage over LPs of produ-ing preditions with attahed degrees of ertainty. Inthe ase of multiple preditions, the probability labelswould allow for relative ranking. This is of partiu-lar importane for Natural Language domains, thoughwould also have general appliation in Bioinformatis(Muggleton 1999b).AknowledgementsThe author would like to thank Wray Buntine, DavidPage, Koihi Furukawa and James Cussens for disus-sions on the topi of Stohasti Logi Programming.Many thanks are due to my wife, Thirza and daughterClare for the support and happiness they give me. Thiswork was supported partly by the Esprit RTD projet\ALADIN' (projet 28623), EPSRC grant \ClosedLoop Mahine Learning", BBSRC/EPSRC grant \Pro-tein struture predition - development and benhmark-ing of mahine learning algorithms" and EPSRC ROPAgrant \Mahine Learning of Natural Language in aComputational Logi Framework".ReferenesCussens, J. 1999. Loglinear models for �rst-orderprobabilisti reasoning. In Proeedings of the 15th An-nual Conferene on Unertainty in Arti�ial Intelli-gene, 126{133. San Franiso: Kaufmann.Fagin, R., and Halpern, J. 1989. Unertainty, beliefand probability. In Proeedings of IJCAI-89. San Ma-teo, CA: Morgan Kau�man.Jaeger, M. 1997. Relational bayesian networks. InProeedings of the Thirteenth Annual Conferene onUnertainty in Arti�ial Intelligene. San Franiso,CA: Kaufmann.Lari, K., and Young, S. J. 1990. The estimationof stohasti ontext-free grammars using the inside-outside algorithm. Computer Speeh and Language4:35{56.
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